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SUMMARY
Sub-critical crack growth was estimated from changes in compliance measured

during the stress-corrosion cracking of D6AC steel at constant load using I-T wedge-
opening-loading specimens. Agreement of calculated mean crack growth with mean
values measured from the fracture surface showed that plastic yielding at the crack tip
during loading and subsequent stress-corrosion cracking was negligible. The analysis was
then applied to side-grooved specimens where it was demonstrated that, under plane-strain
conditions, side-grooving does not significantly affect the stress-corrosion cracking rate
in D6AC steel. D D C
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1. INTRODUCTION

Although compliance measurements are often used in fracture toughness and stress-corrosion
testing to estimate stress intensities1 -, they are employed less frequently to calculate sub-critical
crack growth 5-S. Difficulties which arise in estimating crack growth from compliance measure-
ments include9 (a) non-linear changes in compliance per unit crack growth with increasing
crack length (with the exception of tapered double cantilever beam specimens), (b) extremely
small changes in compliance with increase in crack length (e.g. centre-cracked specimens), and
(c) time-dependent plasticity effects at the crack tip; this effect is manifested by an increase in
compliance during loading (due to non-linearity of the crack-opening-displacement v load curve)
and may also occur during subsequent stress-corrosion, especially if the stress intensity is
increasing during cracking. Compliance changes produced by yielding and crack growth would
then be indistinguishable. These yielding effects would be most noticeable at high loads and in
low-strength alloys. The present work shows how the significance of the last effect was checked

by measuring the change in compliance during the stress-corrosion cracking of a I-T wedge-
opening-loading (WOL) specimen and comparing the calculated crack growth with direct
measurements on the fracture surface. For D6AC steel, these plasticity effects were insignificant
and the compliance method was then used to study the effects of side-grooving on the com-
pliance and stress-corrosion crack-growth rates in distilled water.

2. THEORY

2.1 Specimen with no Side-Grooves

A stress analysis arid experimental confirmation of this analysis for the I-T WOL specimen
have been documented by Novak and Rolfe'0 . The plane-strain stress intensity K,,r of a
specimen with no side-grooves is given by10 :

Kuxg = PCs/(Ba*) [I]

where P is the load, B is the specimen thickness and C3 is a function of the crack length a and
the specimen depth W and is given by:

Cs = [30.96(a/W) - 195-8(aIW)2 + 730.6(a/W)'- l186.3(a/W)4 + 754"6(a/W)5]  [2]

The plane-strain stress intensity function is normally expressed as a function of the rate of change
of compliance with crack length, (dc/da),r, according to the relation 11-12:

Kug = (Guna, E10 - V2))*= P[E/(2B(I - [3))I*(dclda)*unur [3]
where G.,,,r is the crack extension force, E is Young's modulus and v is Poisson's ratio. Com-
bining equations 3 and I gives:

(dc/da),,,Pr = 2(1 - v,2) C3
2/(BaE) [4)

2.2 Specimen with Side-Grooves

In the case of a specimen with side-grooves, it has been suggested that the acting stress
intensity Kgr be modified according to the equation 13:

Kv, = Kugr (B/BN)"' (5]

where BN, is the reduced thickness across the crack front and m is an exponent which can have
values in the range 0-5 < m < I " 0. Previous experiments' 3 have shown that m approaches
0-5 when the toughness in the cracking direction is low compared to the flank direction.

If equation 3 is now applied to a side-grooved specimen" - "2, then:

Kor= (GrE/(l - 0))* = P(E(2BNI - v)))*(dc/da)*,r (61



where Ggr is the crack extension force and (dclda)gr is the rate of change of compliance with

crack length for the side-grooved specimen. Substituting equations 3 and 6 into equation 5 gives:

(dcldo)pr (dc/da)ugvr (BIBy) 2m-1  17]
(dc/da)gr can be expressed in terms of Novak and Rolfe's C3 function by substituting equation
4 into equation 7:

(dc/da)gr = [2(1 - V2)Cs 2/(BaE)](B/BN)2m-l [8]

If m = 0.5, then equation 7 shows that (dc/da)gr = (dclda)uugr and equations 1 and 5
indicate that Kgr = PCs/((BBN)*a*); this is the expression used by Novak and Rolfe in their
studies using shallow side-grooved specimens (B/BN = I 1). Correction factors for dc/da and K
are given in figures 1 and 2 respectively for various m and B/BN values. It is seen that these
factors can be quite substantial except in cases where the side-grooves are shallow or values of
m are close to 0.5.

2.3 Estimation of Crack-Growth from Compliance Measurements during Stress-Corrosion
Cracking

Since contributions to compliance can arise from time-dependent plasticity effects at the
crack tip during loading and subsequent stress-corrosion cracking, this possibility must be
examined before reliable estimates of crack growth can be made. Information can be obtained
by the following method, provided dc/da is known and the length of the crack before and after
stress-corrosion cracking is measured. The latter information can be obtained by fatiguing the
specimen before and after stress-corrosion cracking and measuring the crack lengths from the
fracture surface after the specimen is broken open.

If a series of loads P1, P2, Ps, .... , Ps are applied, then the following iterative procedure
can be adopted to estimate the amount of stress-crorosion crack growth at each load level. For
stress-corrosion cracking at load P1, the initial crack length al is known. An approximate value
for the final crack length (a2) is estimated and this estimate improved until the measured rate of
change of compliance with crack length during stress-corrosion cracking, (ACOD/P)/(a2- a,),
agrees with dc/da at a mean crack length (al+ a2)/2, where ACOD is the change in crack-
opening-displacement at the load line during stress-corrosion cracking. The best estimate for
a2 now becomes the initial crack length for the second burst of stress-corrosion cracking at
load P2 and the procedure repeated. If the total calculated crack length (an + 1) after stress-
corrosion cracking at load Pa agrees with tkat measured from the fracture surface, then it appears
likely that changes in compliance due to yielding at the crack tip are minimal.

The method can be further checked by inserting fatigue markers after each burst of stress-
corrosion at constant load. In this case, however, since the initial and final crack lengths (a,
and a2 respectively) associated with each burst of crack propagation at constant load can be
measured from the fracture surface, calculation of (ACOD/P)/(a2- a,) at a mean crack length
of (ai+ a2)/2 can be compared directly with dc/da.

If changes in compliance during stress-corrosion cracking at constant load arise solely
from changes in crack length, then this method can be extended to obtain experimental values
for (dc/da)gr in side-grooved specimens. This method would then supplement the normal experi-
mental procedure for obtaining dc/da values i.e. measurement of ACOD/P over a range of crack
lengths and subsequent differentiation of the resulting compliance v crack length curve.

3. EXPERIMENTAL

Experiments were conducted with 22.9 mm thick I-T WOL specimens cut from the same
batch of D6AC steel. Specimens were austenitised for 30 minutes at 930oC, quenched to
'Ausbay' at 520'C and held for 30 minutes, and either quenched into hot circulating oil at 60'C
or salt-quenched to 210'C before cooling slowly to room temperature. Specimens were then
double-tempered for I + I hours at 565°C. Composition, tensile and fracture toughness pro-
perties are listed in Table I.

Specimens were machined with cracks aligned in the T-L orientation. Shallow side-grooves
(BN = 20.3 mm) were machined in the specimens prior to heat treatment and deeper side-grooves
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(RN = 18.0 or 7.9 mm) were machined subsequently. The shallow side-groove had a radius
of I *2 mm whereas the deeper side-grooves were machined at an angle of 60' (fig. 3). Specimens
were pre-cracked by fatigue at 10 Hz in air at 25°C and cracks extended to approximately 5 mm
from the notch with the stress intensity varying from 2-20MPam t .

Since it is often difficult to maintain cracking perpendicular to the direction of the applied
load in ungrooved specimens, shallow side-grooved specimens (BN = 20-3 mm) were used to
study if yielding at the crack tip contributed to changes in compliance during loading and
subsequent stress-corrosion cracking as outlined in section 2.3. The deeper side-grooved speci-
mens were used to obtain (dc¢da)gr values from which a value of m could be calculated and
crack-growth rates determined.

Specimens were stress-corroded at constant load in distilled water at 25'C using a cantilever
beam rig and changes in COD were measured using a linear variable differential transducer
(LVDT) placed on the top face of the specimen. Alt COD values obtained were converted to
equivalent values at the load line using a method of similar triangles' 0. Unless otherwise stated,
crack lengths were estimated from the fracture surface using the mean value of seven evenly
spaced points (B -* H) across the width of the crack front (fig. 4).

4. RESULTS AND DISCUSSION

Shallow side-grooved specimens (B/BN = I 1) were alternately stress-corroded in distilled
water at constant load, dried and fatigued in air until fracture. Fig. 4 shows a typical fracture
surface in which regions of stress-corrosion are clearly distinguished from those of fatigue. The
mean rate of change of compliance with crack length for each region of stress-corrosion cracking
is plotted as a function of mean crack length in figure 5 and compared with the results of Novak
and Rolfe for m = 0.5 (i.e. (d¢lda)ungr) and m = 1. It is seen that all the experimentally deter-
mined dc/da values lie within ±10 % of Novak and Rolfe's results (0.5 < m < I 0), therefore
implying that long-term plasticity effects are insignificant during the stress-corrosion of D6AC
steel. Mean crack-growth measurements can therefore be measured to within ± 10% and stress
intensities estimated to within ±3% since Kot(dc/da)* (equations 3 and 6). The magnitude of
the scatter precludes a realistic determination of the exponent m in equation 5.

The validity of this method for determining crack growth was also demonstrated in the case
where a number of consecutively applied loads were used during stress-corrosion cracking.
A shallow side-grooved specimen (BIBN = 1. 1) was fatigue-precracked and stress-corroded for
varying periods of time at seven different loads before fatiguing and breaking open the specimen.
The total mean crack growth was measured from the fracture surface and found to be 5"5 mm.
Knowing the total change in COD during stress-corrosion cracking at each load level, the
crack-growth increment during each period of stress-corrosion at constant load was calculated,
using (dclda)gr values obtained from Novak and Rolfe with m = 0.5, and the total of these
increments was found to be 5.7 mm. A similar calculation using (dc/da)gr with m = 1"0 gave
a value of 5 1 mm. The error in this case was again less than 10% and confirmed that the method
could be used to provide accurate estimates of crack growth.

An estimate of the exponent m in equation 5 was obtained using side-grooved l-T WOL
specimens with B/BN = 2.9. Figure 6 shows the fracture surface of such a specimen which had
been alternately fatigued in air and stress-corroded at constant load in distilled water at 25'C.
It is noted that side-grooving caused the crack front to lead at the specimen edges resulting in
considerable bowing of the crack front. Values of (ACOD/P)/(a 2 - at) (i.e. (dc/da)gr) are plotted
in figure 7 as a function of crack length for each increment of stress-corrosion cracking. Also
shown in figure 7 are corresponding (dc/da), 7 values deduced from experimentally determined
compliance (ACOD/P) measurements taken before each increment of fatigue and stress-corrosion
and which were subsequently differentiated with respect to crack length a. The good agreement
between the two methods confirms the applicability of using stress-corrosion data for estimating
dc/da values. Values of m were estimated from equation 7 and plotted as a function of crack
length in figure 8. Due to crack curvature, values of (dc/da)g, and hence m will vary with the
method used to measure the mean crack length. Figure 8 shows that m only remains constant
with crack length provided the component of crack length at the edge of the specimen is ignored
(i.e. 3 point mean and 7 point mean). Since there is no apparent reason why m should vary
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with crack length, the best estimate of crack length would appear to be given by the 7 point
mean and the corresponding value for m is therefore 0.70.

The effect of side-groove depth on stress-corrosion cracking rate in distilled water at 25'C
was studied using both oil-quenched and salt-quenched r'6AC specimens tempered to 565°C
and with BIBN values of 1 1, 1.5 and 2.9. As shown in figure 9, the difference in quenching rate
(salt versus oil) does not affect the stress-corrosion cracking rate in shallow side-grooved specimens
(BIBN = I.1). Moreover, the effect of machining deeper side-grooves (B/BN = I 5 and 2.9)
in either of these heat-treated specimens does not alter the stress-corrosion crack-growth rate
significantly.

Plane-strain conditions (viz. B > 2 5(K2/vs, 2))9 (aw is the yield stress) prevail over the full
range of sub-critical cracking shown in figure 9. Cracking is therefore controlled by the plane-
strain conditions at the specimen centre even though shear lips (-'5 % of total fracture surface
area) are present during overload in the shallow-grooved specimens (B/BN = 1.1). These shear
lips are characteristic of plane-stress conditions prevailing close to the specimen edge and due
to the insensitivity of these regions to stress-corrosion cracking14 , convex-shaped crack fronts
often develop during sub-critical cracking. Application of deeper side-grooves removes these
shear lips during overload suggesting that the last traces of plane stress near the specimen surface
have been removed. The enhancement of concave-shaped crack fronts may be due to notching
effects which could introduce a stress-concentration factor close to the surface. Although this
stress-concentration factor may be sufficient to reverse the curvature of the crack front, the
apparent insensitivity of side-grooving to stress-corrosion crack-growth rate confirms that
cracking is controlled by the plane-strain regions remote from the specimen sides. It is therefore
concluded that crack-front curvature is much more sensitive to side-grooving than crack-growth
rate in circumstances where plane-strain conditions prevail. In thinner specimens, however,
where a greater proportion of plane stress exists, side-grooving might be expected to have a
more substantial effect on crack-growth rate since (a) the ratio of plane strain to plane stress
would be substantially increased by side-grooving, and (b) stress-corrosion crack-growth rates
under plane-strain conditions are several orders of magnitude greater than under plane-stress
conditions1 4.

5. CONCLUSIONS

Compliance measurements have been used to demonstrate that yielding at the crack tip
during stress-corrosion cracking of ultra-high strength D6AC steel at room temperature is not
important. It has also been shown that changes in compliance due to stress-corrosion cracking
can be used to estimate both stress intensity and crack growth without recourse to conventional
compliance measurements. Finally, under conditions of plane strain, side-grooving was found
to affect crack curvature but not stress-corrosion crack rate.
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TA1BLE I
Composition mwl Properties of D6AC Steel

C MA Si P S Cr Ni Mo V Fe
wt. %0-45 0.75 0-22 0-004 0.005 1-10 0-67 1-00 0-090 remainder

Quench Medium UTS (MPa) Kic (MPam*)
oil 1590 94
salt 1600 90
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